Ovjus46acnfesb6axqn5
Meet up

Machine Learning Models for Molecular Data

Thursday, 23rd May at CodeNode, London

This meetup was organised by London Quantum Computing in May 2019

Machine Learning Models for Molecular Data

In this meetup, Vid will talk about the challenges of designing machine learning models for molecular data. Unlike for image or text data, it is in general impossible to present a full quantum mechanical wave function of a molecule to a classical machine learning model.

Therefore, doing classical machine learning on molecular data requires some form of feature engineering. While quantum computers might provide a comprehensive solution to this challenge in the future, it is nevertheless possible to use quantum mechanical and quantum computing ideas to guide both the choice of molecular representations and the design of machine learning models. Vid will describe both the theory behind these ideas as well as potential practical applications, focusing on problems in chemistry, and specifically in the pharmaceutical industry.

Vid Stojevic

CTO and co-founder of a new start-up called GTN - Generative Tensorial Networks ( http://gtn.ai ) - who are using “advanced cutting-edge quantum physics and machine learning methods to enable the next 150 years of drug discovery” and are currently at the stage of actively hiring 10 engineers/physicists + others to start their company.

Thanks to our sponsors

Attending Members

Overview

Machine Learning Models for Molecular Data

In this meetup, Vid will talk about the challenges of designing machine learning models for molecular data. Unlike for image or text data, it is in general impossible to present a full quantum mechanical wave function of a molecule to a classical machine learning model.

Therefore, doing classical machine learning on molecular data requires some form of feature engineering. While quantum computers might provide a comprehensive solution to this challenge in the future, it is nevertheless possible to use quantum mechanical and quantum computing ideas to guide both the choice of molecular representations and the design of machine learning models. Vid will describe both the theory behind these ideas as well as potential practical applications, focusing on problems in chemistry, and specifically in the pharmaceutical industry.

Vid Stojevic

CTO and co-founder of a new start-up called GTN - Generative Tensorial Networks ( http://gtn.ai ) - who are using “advanced cutting-edge quantum physics and machine learning methods to enable the next 150 years of drug discovery” and are currently at the stage of actively hiring 10 engineers/physicists + others to start their company.

Thanks to our sponsors

Who's coming?

Attending Members