Please log in to watch this conference skillscast.
We’re told data science is the key to unlocking the value in big data, but nobody seems to agree just what it is. Is it engineering, statistics. . .both? David Donoho’s “50 Years of Data Science”, which is itself a survey of Tukey’s “Future of Data Analysis”, will present you with one of the best criticisms of the hype around data science from a statistics perspective, arguing that data science is not new (if it’s anything at all) and calling statistics to action (again) to take back the field with a more practical, modern view of what it means to teach statistics and data science.
Drawing on his blog post, Sean Owen responds, offering counterpoints from an engineer, in search of a better understanding of how to teach and practice data science in 2017. You will explore some key points in the history of data science from the past 50 years in order to build up a more complete view of how data science sprung out of statistics and merged with computer engineering. Finally, you will discover Donoho’s view of what it means to build data science capability with one taken from the experience organizations doing so in the context of Apache Hadoop, Spark, and other big data tools.
YOU MAY ALSO LIKE:
- Fast Track to Machine Learning with Louis Dorard (in London on 21st - 23rd May 2018)
- Lightbend Apache Spark for Scala - Professional (in London on 3rd - 4th July 2018)
- Infiniteconf 2018 - The conference on Big Data and AI (in London on 5th - 6th July 2018)
- Blockchain by Brian Sletten (in London on 9th - 10th July 2018)
What “50 Years of Data Science” leaves out
Sean Owen
Sean is Director of Data Science at Cloudera in London. Before Cloudera, he founded Myrrix Ltd (now, the Oryx project) to commercialize large-scale real-time recommender systems on Apache Hadoop. He is an Apache Spark committer and co-authored Advanced Analytics on Spark. He was a committer and VP for Apache Mahout, and co-author of Mahout in Action. Previously, Sean was a senior engineer at Google.