Please log in to watch this conference skillscast.
Recommender systems are paramount for e-business companies. There is an increasing need to take into account all user information to provide the best, most tailored products. One important element is the content that the user actually sees: the visual of the product.
In this talk, you will discover how Dataiku improved an e-business vacation retailer recommender system using the content of images. You'll explore how to leverage open datasets and pre-trained deep learning models to derive user preference information. This transfer learning approach enables companies to use state-of-the-art machine learning methods without having deep learning expertise.
YOU MAY ALSO LIKE:
How to Improve your Recommender System with Deep Learning: A Use Case
Alexandre Hubert
Alexandre Hubert has been a data scientist at Dataiku for more than two years. He works on several bank use cases as loan delinquency for leasing and refactoring institutions but also marketing use cases for retailers. Before that, he worked as a trader in the city of London.