This session was not filmed.
Building any production-ready machine learning system is complex. You have to manage services and tools that often don’t play nice with each other. And when they do you have to spend time manually tweaking deployments and hand rolling solutions before a single model can be tested. Worse, these hand-rolled solutions are so tied to your production cluster that it’s impossible to run your code locally making it even harder to spot bugs.
In this workshop, you’ll learn how to leverage Kubernetes to deploying complex workloads in the cloud, on bare metal and locally. You’ll learn how Kubernetes provides a fast iteration cycle, flexible scalability, and a lack of boilerplate which makes it ideal for most of the machine learning experiments.
Please install the following software on your computer:
- - Kubectl
- - Docker
- - Bash (please install Cmder if you're on Windows)
- - Git
- - Python 2.7 and pip
- - A text editor such as Atom
You should also create an account on Docker Hub.
YOU MAY ALSO LIKE:
Workshop: Scaling Machine Learning in the Cloud with Kubernetes
Salman Iqbal
Salman is a lead developer at Jardine Lloyd Thompson, a FTSE 250 Financial Institution.
Daniele Polencic
Daniele Polencic is a well-known face in London’s tech scene. A technical consultant for learnk8s.io and certified training partner for Kubernetes and the Linux Foundation, Daniele is a passionate proponent for JavaScript programming, and consults with startups when he is not coding himself.