Kprchbliuku1qt4mrxap
SkillsCast

Reinforcement Learning in Scala

13th December 2018 in London at Business Design Centre

There are 50 other SkillsCasts available from Scala eXchange London 2018

Please log in to watch this conference skillscast.

Https s3.amazonaws.com prod.tracker2 resource 41088130 skillsmatter conference skillscast o9nohu

Reinforcement learning (RL) is a powerful machine learning paradigm that has been successfully applied to a wide class of problems, from steering helicopters to predicting stock prices. During this talk you will find out what RL is all about and how to implement it in Scala. Chris will introduce RL, providing use cases and intuition about what kind of problems it can solve. He'll also share some of its core concepts, including Markov Decision Processes, policies and action values, prediction and control, exploitation vs exploration and bootstrapping.

Next you'll implement some of these concepts in Scala, starting from scratch and working step by step towards an implementation of 'Q-learning' – a popular RL technique for learning policies. You'll structure your code using type classes to separate the generic Q-learning framework from the specifics of any particular problem we want to model.

You will also learn how to train an agent using your Q-learning implementation, and finally Chris will demonstrate the result of the training: the computer successfully playing a simple game.

YOU MAY ALSO LIKE:

Thanks to our sponsors

Reinforcement Learning in Scala

Chris Birchall

Chris is a principal software developer at OVO Energy, where he looks after authentication and personal data as a member of the Identity team. He is the author of the ScalaCache library. He has been using Scala for work and play since 2010.

SkillsCast

Please log in to watch this conference skillscast.

Https s3.amazonaws.com prod.tracker2 resource 41088130 skillsmatter conference skillscast o9nohu

Reinforcement learning (RL) is a powerful machine learning paradigm that has been successfully applied to a wide class of problems, from steering helicopters to predicting stock prices. During this talk you will find out what RL is all about and how to implement it in Scala. Chris will introduce RL, providing use cases and intuition about what kind of problems it can solve. He'll also share some of its core concepts, including Markov Decision Processes, policies and action values, prediction and control, exploitation vs exploration and bootstrapping.

Next you'll implement some of these concepts in Scala, starting from scratch and working step by step towards an implementation of 'Q-learning' – a popular RL technique for learning policies. You'll structure your code using type classes to separate the generic Q-learning framework from the specifics of any particular problem we want to model.

You will also learn how to train an agent using your Q-learning implementation, and finally Chris will demonstrate the result of the training: the computer successfully playing a simple game.

YOU MAY ALSO LIKE:

Thanks to our sponsors

About the Speaker

Reinforcement Learning in Scala

Chris Birchall

Chris is a principal software developer at OVO Energy, where he looks after authentication and personal data as a member of the Identity team. He is the author of the ScalaCache library. He has been using Scala for work and play since 2010.

Photos