Collecting Uncertain Data the Reactive Way

10th December 2015 in London at Business Design Centre

There are 56 other SkillsCasts available from Scala eXchange 2015

Skillscast coming soon.

Before you can even get started building large-scale data analytic systems, you need to start with one crucial element: data. Collecting data, especially collecting lots of data, is harder than it seems. Data ingested with the wrong data model can be worse than no data at all, and a data collection system that is too slow can bring an entire platform grinding to a halt. Don't panic! Scalable, non-destructive data collection is possible. This talk will focus on strategies for data collection based on real world experience building large scale machine learning systems. It will introduce ideas from the emerging paradigm of reactive machine learning that are based on older ideas about immutable facts and pervasive, intrinsic uncertainty.


Collecting Uncertain Data the Reactive Way

Jeff Smith

Jeff Smith builds large-scale machine learning systems using Scala and Spark. For the past decade, he has been working on data science applications at various startups in New York, San Francisco, and Hong Kong. He is a frequent blogger and the author of an upcoming book from Manning on how to build reactive machine learning systems using Scala, Akka, and Spark.